

Ames Research Center Moffett Field, California 94035-1000 Aircraft Data Facility NASA-Ames Research Center Mail Stop 240-6 Moffett Field, California 94035-1000 (415) 604-6252 • FTS 464-6252

FLIGHT SUMMARY REPORT

Flight Number:	93-098		
Calendar/Julian Date:	07 May 1993 • 127		
Sensor Package:	Wild Heerbrug RC-10 Thematic Mapper Simulator (TMS) NASA Aircraft Satellite Intrument Calibration (NASIC)		
Area(s) Covered:	Sierra Nevada		

Investigator(s): Functional Sensor Flight

Aircraft #: 708

SENSOR DATA

Accession #:	04551	3. 1. 1. 1. 1.	
Sensor ID #:	076	074	104
Sensor Type:	RC-10	TMS	NASIC
Focal Length:	12" 304.89 mm		
Film Type:	Aerochrome IR SO-134		
Filtration:	Wratten 12		
Spectral Band:	510-900 nm		
f Stop:	8		
Shutter Speed:	1/400		
# of Frames:	85		
% Overlap:	60		
Quality:	Fair	Good	
Remarks:	Data overexposed; camera clock offset 10.4 seconds from navigation data		

Airborne Science and Applications Program

The Airborne Science and Applications Program (ASAP) is supported by three ER-2 high altitude Earth Resources Survey aircraft. These aircraft are operated by the High Altitude Missions Branch at NASA-Ames Research Center, Moffett Field, California. The ER-2s are used as readily deployable high altitude sensor platforms to collect remote sensing and *in situ* data on earth resources, celestial phenomena, atmospheric dynamics, and oceanic processes. Additionally, these aircraft are used for electronic sensor research and development and satellite investigative support.

The ER-2s are flown from various deployment sites in support of scientific research sponsored by NASA and other federal, state, university, and industry investigators. Data are collected from deployment sites in Kansas, Texas, Virginia, Florida, and Alaska. Cooperative international scientific projects have deployed the aircraft to sites in Great Britain, Australia, Chile, and Norway.

Photographic and digital imaging sensors are flown aboard the ER-2s in support of research objectives defined by the sponsoring investigators. High resolution mapping cameras and digital multispectral imaging sensors are utilized in a variety of configurations in the ER-2s' four pressurized experiment compartments. The following provides a description of the digital multispectral sensor(s) and camera(s) used for data collection during this flight.

Thematic Mapper Simulator

The Daedalus Thematic Mapper Simulator (TMS) is a multispectral scanner flown aboard the ER-2 aircraft which simulates spatial and spectral characteristics of the seven Landsat-D Thematic Mapper bands. The specific bands are as follows:

Daedalus Channel	TM Band	Wavelength, µm
1	Α	0.42 - 0.45
2	1	0.45 - 0.52
3	2	0.52 - 0.60
4	В	0.60 - 0.62
5	3	0.63 - 0.69
6	С	0.69 - 0.75
7	4	0.76 - 0.90
8	D	0.91 - 1.05
9	5	1.55 - 1.75
10	7	2.08 - 2.35
11	6	8.5 - 14.0 low gain
12	6	8.5 - 14.0 high gain

Sensor/aircraft parameters are as follows:

IFOV:	1.25 mrad
Ground Resolution:	81 feet (25 meters) at 65,000 feet
Total Scan Angle:	430
Swath Width:	8.4 nmi (15.6 km) at 65,000 feet
Pixels/Scan Line:	716
Scan Rate:	12.5 scans/second
Ground Speed:	400 kts (206 m/second)

Information on data tape format, logical record format, and scanner calibration data may be obtained from the Aircraft Data Facility, NASA-Ames Research Center, Mail Stop 240-6, Moffett Field, California 94035-1000 (Telephone: 415-604-6252).

NASA Aircraft Satellite Instrument Calibration

The NASA Aircraft Satellite Instrument Calibration (NASIC) is a scanner developed to calibrate research and operational instruments in orbit onboard NOAA and NASA satellites. The NASIC consists of a double Ebert Monochrometer flown on NASA-Ames ER-2 aircraft. Airborne Satellite Calibration System missions are flown coincident with satellite overpasses and fly the same view vector as the satellite instrument over a selected ground scene. The system is used to calibrate instruments such as the Advanced Very High Resolution Radiometer (AVHRR), the Thematic Mapper (TM), and the Coastal Zone Color Scanner (CZCS).

Sensor parameters are as follows:

Detector:	Double Monochrometer with Holographic Grating
Across Track FOV:	80
Along Track FOV:	4o
Ground Swath Dimensions:	1.5 x 0.75 nmi (2.8 x 1.4 km)
Spectral Range:	400-1035 nm
Scans/Data Collection Leg:	36 + 2 Baseline Housekeeping
Data Points/Scan Line:	184
Data Point Spectral Range:	3.5 nm

For information regarding the NASIC project and data contact Peter Abel, Laboratory for Terrestrial Physics, Code 920.1, NASA-Goddard Space Flight Center, Greenbelt, Maryland 20771. (Telephone: 301-286-7754).

<u>Camera Systems</u>

Various camera systems and films are used for photographic data collection. Film types include high definition color infrared, natural color, and black and white emulsions. Available photographic systems are as follows:

- Wild-Heerbrug RC-10 metric mapping camera
 - 9 x 9 inch film format
 - 6 inch focal length lens provides area coverage of 16 x 16 nautical miles from 65,000 feet
 - 12 inch focal length lens provides area coverage of 8 x 8 nautical miles from 65,000 feet
- Hycon HR-732 large scale mapping camera
 - 9 x 18 inch film format
 - 24 inch focal length lens provides area coverage of 4 x 8 nautical miles from 65,000 feet
- IRIS II Panoramic camera
 - 4.5 x 34.7 inch film format
 - 24 inch focal length lens
 - 90 degree field of view provides area coverage of 2 x 21.4 nautical miles from 65,000 feet

The U.S. Geological Survey's EROS Data Center at Sioux Falls, South Dakota serves as the archive and product distribution facility for NASA-Ames aircraft acquired photographic and digital imagery. For information regarding photography and digital data (including areas of coverage, products, and product costs) contact EROS Data Center, Customer Services, Sioux Falls, South Dakota 57198 (Telephone: 605-594-6151).

For specific information regarding flight documentation, sensor parameters, and areas of coverage contact the Aircraft Data Facility, NASA-Ames Research Center, Mail Stop 240-6, Moffett Field, California 94035-1000 (Telephone: 415-604-6252). Additional information regarding ER-2 acquired photographic and digital data is also available.

CAMERA FLIGHT LINE DATA FLIGHT NO. 93-098

.

.

Accession # 04551

• •

Sensor # 076

Check	Frame	Time (GMT-hr, min, sec)		Altitude, MSL			
Points	Numbers	START	END	feet/meters	Cloud Cover/Remarks		
A - C	7914-7934	18:19:34	18:29:12	65000/19800	10-40% scattered cumulus (frames 7917- 7928); oblique (frame 7934)		
C - F	7935-7974	18:29:41	18:48:26	W	10-20% scattered cumulus (frames 7971- 7974); oblique (frame 7974)		
F - G	7975-7998	18:48:55	18:59:55		10-20% scattered cumulus (frames 7975- 7980); oblique (frame 7975)		
0							
				Œ			

TMS SCANNER FLIGHT LINE DATA FLIGHT NO. 93-098

Mailana Artar Dela Alian Antra Sidva

tan k Kolats	bucin para	Al¥Sikala Jenai≊S Nagti in ka	$\frac{\partial}{\partial t} = \frac{\partial g}{\partial t} = -\frac{\partial g}{\partial t} + \frac{\partial g}{\partial t} = -\frac{\partial g}{\partial t} + \frac{\partial g}{\partial t} = -\frac{\partial g}{\partial t} = -\frac{\partial g}{\partial t} + \frac{\partial g}{\partial t} = -\frac{\partial g}{\partial t$	विद्या ज्यूचि जै काम्बिय	htu orjana 2000 (2012)	्रक्रम् । १९२१ म्हेस्ट्रियो हेल्फ्री संस्थत	(31,1 40 - 3:80 0 - 11 - 12
A - B	1994;1214 Ht 211 - 19	10 10 B B	2.911 17.22	17 - 71	(a)/ []		2
B - C	18,011 1,0 19,23 0,0	2-21 25 -	$\{(\alpha, \beta_k), (\beta_k)\}$	147.3	5700	2	4
C - D	$\{0,0\},\{0,0\},\{0,1$	1.07 .39	55.45.12a?	32 ond	10.1	8	10
D≚E	18:32: 1.0 (E. W. C. 6)	50175 - 2719Q	644747447	ià lui	$i_{i,i} \rho_{i+j}$	ч.	
EF	(11) 32.0 10 BEFF 66	11 Tan 12 St.	$\mathbb{E}_{T_{i}}10\in\mathbb{N}_{t}(t)$	1.0.23	3751	5	#:
F - G	18:00:11:0 19:00: 5.0	$45215 \oplus (477)$	ari (971) (12	12.28	10		0

•

FLIGHT 93-098 7 NAY 1993 A/C 708 RC-10 / THS JNC 43